ENGINEERING COMMUNICATION -- DRAWINGS

ME 482 Senior Design II Spring 2024

Dr. Trevor C. Sorensen adapted from a presentation by Dr. Zhuoyuan Song

Engineering Drawing

- A form of visual communication
- Common language of engineering
- A method of transferring ALL needed information from <u>design</u> into <u>manufacture</u>

- Effective and efficient way to communicate:
 - Engineering requirements (Customer → Engineer)
 - Proposals (Engineer → Customer)
 - Design intent (Engineer → Manufacture)
 - Instructions (Engineer → User)

Design Intent

- Purpose: Building intelligence into the model
- Governs how features are **intended** to be related with each other
- With good design intent, models can be updated almost effortlessly
 - "... a detailed explanation of the ideas, concepts, and criteria that are defined by the Owner to be important;
 - ... even when you have a <u>full geometric description</u> of an object you may **NOT** know why something is designed to be like it is."
 - P.Y. Papalambros, J. Mech. Des. 2010
- Example 1: A CAD model from reverse engineering a 3D laser scanner
 - No, do not contain any information about their design intent
 - Not record relationship between sub-parts or a construction sequence
- Example 2: Transferring a model from one CAD system into another
 - Maybe, often does not transfer design intent
 - May result in approximate models due to different model representations and tolerance systems.

Legal Contracts

Engineering drawings are legal contracts

- If the product is wrong, manufacturer is protected from liability as long as he/she has faithfully executed the drawing instructions.

- Creation and maintenance of them are, and should be, expensive and time consuming
- Drawings should communicate all the needed information about "what is wanted"
- No ambiguity
- Not open to interpretation

Early Engineering Drawing Pioneers

- Leonardo da Vinci (1452 1519)
 - Created pictorial drawings
 - Without dimensions

- Leon Battista Alberti (1404 1472)
 - Needs for geometry in drawing
 - Drawings with multiple views

- René Descartes (1596 1650)
 - Invented Cartesian coordinate system
 - Founder of analytic geometry

Evolution of Engineering Drawing

- Pre-industrial revolution
 - Parts from hand sketches and drawings
- Post-industrial revolution (19th Century)
 - Interchangeability became important
 - Requires accurate drawing
 - Engineering drawing evolves rapidly
- From hand practice to CAD $(1960 21^{st} C)$

Types of Engineering Drawing

- Cartographic
- Electrical
- Electronics
- Civil
- Architectural
- HVAC
- Landscape
- Mechanical
- (...)

Tools for communication

Requires worldwide, standardized drafting practices

Engineering Drawing Standards

- Standards provide rules for specification and interpretation
- Standardization aids internationalization
- ANSI (ASME) vs. ISO
- Drawing Concepts Overview
 - Isometric Drawing
 - Multiview (Orthographic) Drawing
 - Sectioning
 - Dimensioning

Isometric Drawing

- Method for representing 3-D in 2-D.
- It is an axonometric projection in which the three coordinate axes appear equally foreshortened and the angle between any two of them is 120 degrees.

Wikipedia.org

- Any engineering drawing should show everything
- A complete understanding of the object should be possible from the drawing

Multiview (Orthographic) Projection

• Orthographic projection: System for drawing and dimensioning

complex three-dimensional items

• From 3D designs to 2D drawings

View from orthogonal planes

How many views?

Does it have to be three?

- Six principal viewing planes:
 - Front, top, right-side, left-side, bottom, rear
- Need as many views as are required to fully described the object

Auxiliary Views

- Parts with surface(s) not parallel to any of the six principal viewing planes
- Allow for inclined planes (and any other significant features) to be projected in their true size and shape

Sectioning and Section Views

Used when interior details cannot be seen from the outside

Dimensioning

- A dimension is for size and position
- Different kinds: Linear, aligned, angular, radius/diameter, reference etc.

Rules for Dimensioning

- **Accuracy**: correct values must be given.
- Clearness: dimensions must be placed in appropriate positions.
- **Completeness**: nothing must be left out, and nothing duplicated.
- **Readability**: the appropriate line quality must be used for legibility.
- Put in exactly as many dimensions as are necessary for the craftsperson to make it - no more, no less.

- clutter the drawing
- often lead to conflicts when tolerance allowances can be added differently

CAD

- It's not a computer game!
- Suppose to facilitate the expression of design intent

Common CAD Software Manufacturers

- Alibre, Inc.
- Ashlar-Vellum
- Autodesk, Inc.
- Bentley Systems, Inc.
- Dassault Systèmes
- Google Inc.
- GRAPHISOFT
- IMSI/Design, LLC
- Intergraph
- IronCAD
- Kubotek Corporation
- Parametric Technology Corporation
- Siemens Corporation
- Solidworks

Common CAD Formats

• 2-D Drawings

3-D Wireframe Model

• 3-D Surface Model

• 3-D Solid Model

Surface Modeling Techniques

Polygon

• Non-uniform rational basic spline (NURBS)

Creating Surfaces

• Direct surface modeling

• Procedural surface modeling

Conclusions

- Engineering drawing is a vital form of communication
- Engineering drawings are legal documents
- Key is to capture design intent
- Should contain all vital information for production
- CAD software should only facilitate instead of replace design