
ME 481 Fall 2021: Drs. Mehrdad Nejhad & Trevor Sorensen

FEM/FEA Boundary Conditions, 
and Failure Analysis

Three Cases must use FEM/FEA:

(1) Irregular Geometry
(2) Complex Material Properties

(3) Nonlinearity

NOTE: Three general cases you would need to use FEA for your Analysis and 
Analytical Solutions do not apply:

(1) Irregular Geometry,
(2) Complex and Non-homogenous Materials Properties, and
(3) Nonlinearity of the Problems

I: Classical 1-D FEA Problem 
(Axial Loading of a Bar)

https://enterfea.com/finite-element-analysis-by-hand/
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https://enterfea.com/finite-element-analysis-by-hand/


F = K ∆X , where K = AE/L & ∆X = ∆U
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AE/L = K

Pre-Dot the above Eq by [K] -1

[K]-1 {F} = [K]-1 [K] {U}, where [K] -1 [K] = [1] == [K]-1 {F} = {U}

{Ui} = [Kij] -1 {Fj}
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{εi} = [d/dxij] {uj},
General 3D Case:

{σi}6x1 = [Cij] 6x6 {εi}6x1

σi = σx , σy , σz , σxy , σyz , σzx & σij = σji

εi = εx , εy , εz , εxy , εyz , εzx & εij = εji



II: 3D General Materials Properties 
in Mechanices

Cij = Cji = 21 independent materials Anisotropic properties [Cij]

= 9 independent materials Orthotropic properties (3E’s, 3Gs, 3νs)

= 5 independent materials Transversly-Isotropic properties (2Es, 1G, 2νs)

= 2 independent materials Isotropic properties (E & ν , since G = E/(2(1+ν)))

III. Geometries
For the following Regular Geometries Analytical Solutions and associated Governing
Equations (written for the given coordinate system) plus the boundary and initial
conditions can be used. Otherwise (i.e., Irregular Geometries) FEA should be used).

(III.1): Cartesian/Orthogonal Coordinate System: x, y, z

Unit Vectors

Heat Conduction Eq in Cartesian Coordinate System:
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(III.2): Cylindrical/Orthogonal Coordinate System: ρ, φ, z

Unit Vectors

Heat Conduction Eq in Cylindrical Coordinate System:

(III.3): Spherical/Orthogonal Coordinate System: r, φ, θ

Unit Vectors
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Heat Conduction Eq in Spherical Coordinate System:

IV. Nonlinearity:
IV.1. Nonlinearity due to Small Deformation versus Large 
Deformation

If “f” is the tip Deflection and “t” is the thickness of a beam, then:

If f << t , then f is considered “small deformation” and the problem is Linear.

If f >> t , then f is considered “large deformation” and the problem is Nonlinear.

IV.2. Nonlinearity due to the Governing Equations

If the Field/Dependent Variable within the Individual Terms of a Governing 
Equation is to the first power only, then the problem is Linear.

If the Field/Dependent Variable within the Individual Terms of a Governing 
Equation is to the second or higher power, then the problem is Nonlinear.

If K is variable in space, the 3D Heat Conduction Eq is:
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If K is constant in space and the material is Isotropic, the 3D Heat Conduction Eq is 
(where, α = k/ρc: Thermal Diffusivity)):

If K is constant in space and the material is Orthotropic, the 3D Heat Conduction Eq is:

Kx (∂2T/∂x2) + Ky (∂2T/∂y2) + Kz (∂2T/∂z2) + (egen) = ρc (∂T/∂t)

The above Eqs are Linear since for each term of the Eq, the Field/Dependent Variable
(i.e., T) is to the first power.

If the Thermal Conductivity components are functions of Temperature, then the above
equation becomes Nonlinear since it will have the Field/Dependent Variable (i.e., T) to
the second power for each term of the Eq. as:

Kx (T) (∂2T/∂x2) + Ky (T) (∂2T/∂y2) + Kz (T) (∂2T/∂z2) + (egen) = ρc (∂T/∂t)

Governing Eq for Bending of a Beam:
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Governing Eq for Bending of a Plate:

Where:
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V. Finite Element Modeling & Analysis:

Any Finite Element Modeling (FEM) and Finite Element Analysis (FEA) includes the 
following three main steps: (1) Pre-Processing, (2) Model Solution, (3) Post-Processing.

V.1. Step 1: Pre-Processing
1. : V. 1 . 1 .  Object Generation:

1. 3D: 3D Solid Modeling with Solid Elements
2. 1D & 2D: 1D Beam Element & 2D Shell Elements

2. : V. 1 . 2 .  Pick Analysis Type (for Step 2:  Model Solution):

1. Structural Analysis (Static or Dynamic; Linear or Non-Linear)
2. Heat Transfer Analysis (Steady State or Transient; Linear or Non-Linear)
3. Fluids Analysis (Steady State or Transient; Linear or Non-Linear)

3. : V. 1 . 3 .  Meshing (see Meshing details):

1. Select Elements
2.           Select Nodes

4. : V. 1 . 4 .  Material Properties (see [Cij] details):

1. Isotropic (Metals/Polymers/Ceramics)
2. Transversely Isotropic (Composite Plies)
3. Orthotropic (Smart Materials, Superconducting, Thin Films, etc)
4. Anisotropic (Often due to rotation of Trans. Iso. Or Orthotropic materials)

5. : V. 1 . 5 .  Boundary Conditions (see BCs details):

1. Applied Loads
2. Restraints



V.1.3. MESHING Details (Elements & Nodes)

Family Topology Order

Beam (1-D) Line Linear

Shell (2-D) Rectangular  
Triangular

Quadratic  
Parabolic

Solid (3-D) Brick 
Wedge 
Tetrahedron

Cubic
Cubic
Cubic

SUMMARY OF MESHING Details (Elements & Nodes)
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V.1.5.1. Boundary Conditions for Heat Transfer (HT) & Fluids (F)

V.1.5.2. BCs: Applied Loads in Mechanics
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V.1.5. Boundary Conditions Details



V.1.5.3. BCs: Restraints in Mechanics

12

V.1.5. Boundary Conditions Details
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V. Finite Element Modeling & Analysis:

V.2. Step 2:  Model Solution

V.2.1: Solve/Run



V.3. Step 3: Post-Processing
V.3: Output Selection (e.g., in Mechanics):

V.3.1. Stresses (6 Independent Components, of a 2nd Order Tensor)

X-Normal (σxx) 
Y-Normal (σyy)

Z-Normal (σzz)

XY-Shear (σxy)
YZ-Shear (σyz)
ZX-Shear (σzx)

V.3.2. Strain (6 Independent Components, of a 2nd Order Tensor)

X-Normal (εxx) 
Y-Normal (εyy)

Z-Normal (εzz)

XY-Shear (εxy)
YZ-Shear (εyz)
ZX-Shear (εzx)

V.3.3. Displacements (3 Independent Components, of a Vector = 1st Order Tensor)

X-Direction (Ux)
Y-Direction (Uy)
Z-Direction (Uz)

V.3.4. Von Mises Stresses (Distorsion Energy Theory)

VM Stress in terms of principle stresses

VM Stress in terms of 6 components actual stresses
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σij = σji

{σi}6x1 = [Cij] 6x6 {εi}6x1
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VI: Failure Analysis & 
Factor of Safety (FOS):

Two Considerations:

(I) Stress Critical Structures
(II) Stiffness (Deflection/Displacement) Critical Structures 
(III) Materials Selection Issues Related to Failure Analysis

VI.I. Stress Critical Structures: FOS = σyield / σmax > 1 VI.1.

VI.I.1. For Isotropic Materials (Metals, Polymers, Ceramics)

Use Maximum Von Mises Stress:

FOS = (σyield / σmax Von Mises) > 1 

VI.I.2. For Anisotropic Materials (Composite materials_

Use Maximum Stress Criterion: i.e., find FOS for each stress-component (i.e., FOS = 
direction-strength/maximum direction-stress), and then the Min FOSs is the FOS.

For example:

(1) Find FOSs for Normal Stresses (3 componenets):
FOS for σxx : FOS |σxx = (Normal Strength in X-Direction / σxx max) > 1
Likewise for σyy & σzz : FOS |σyy & FOS |σzz > 1

(2) Find FOSs for Shear Stresses (3 independent componenets): FOS for 
σxy : FOS | σxy = (Shear Strength in XY-Plane / σxy max) > 1 Likewise for 
σyz & σzx : FOS |σyz & FOS |σzx > 1

(3) Final FOS = Min (FOS | σxx , FOS | σyy , FOS | σzz , FOS | σxy , FOS | σyz , FOS | σzx ) >1

Typical FOS in Design = 1.5, Human Life Involved= 2.5 (if confident about your assumption,
modeling, and analysis); otherwise pick Larger (up to 4).

In Space Applications since weight is a critical factor, the analyses are conducted
accurately, and hence it is afforded to use lower FOSs = ~ 1.1 to 1.25.



VI.I.3.   Remedies if FOS = σyield / σmax < 1:

We want to increase FOS to > 1: So,

(1) Either Increase the Numerator (i.e., σyield)

(2) Or Decrease the Denominator (i.e., σmax)

(1) Increase the Numerator (i.e., σyield) :

By changing the material to a Stronger Material with higherσyield ,  
e.g., change Aluminum to Steel.

(2) Decrease the Denominator (i.e., σmax   ):

σ can, in general, be modeled as σ = F / A

σ = F / A

Since F is a design parameter and often cannot be changed, hence the remedy is to use a 
“beefier” components, i.e., with higher cross-sectional area, A, where stress is acting on.

For example: The beam with cross-section of b=width, h=thickness, and l=length

For Axial Loading (Tension or Compression): σ = F / A , Increase A = b x h

For Lateral Loading (Bending):σ = MC/I & I = b h3/12 , 

Increase h since it has cubic effect in increasing I than b.
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VI.II Stiffness (Deflection/Displacement) Critical Structures: 
Deflection/Displacement < δ limit

VI.II.1. Limites of Deflections/Displacement in Designs:

For those structures that have FOS >> 1, then next consideration is if the material is stiff
enough to give Deflection/Displacement < δ limit (assuming the nominal cross-section
is 10mmx10mm, i.e., not more than 10% to also stay within Linear Regime)

Therefore, in many designs various components have their own Critical
Deflection/Displacement Limits (δ limit) that designers should check with the
sponsor/client; however, a rule-of-thumb is that:

Deflection/Displacement < 1 mm=0.040” (for a nominal cross-section: 10mmx10mm 
to also stay within the Linear Regime)

VI.II.2.     Remdeidies if Deflection/Displacement > δ limit:

The amount of Deflection/Displacement in a structure is a function of the structure 
Stiffness (i.e., Young’s Modulus, E: σ = E ε ).

For Axial Loading (Tension or Compression):  σ = F / A = E ε = E ∆L/L:

F = EA ∆L/L == ∆L = δ = F L / E A

Then, if F, L, and A are the design parameters that you cannot change, then the only 
remedy is to use a Stiffer Materials, e.g., change Aluminum to Steel

For Lateral Bending Loading (Bending):

f = δ = F L3 / 3 E I , where I = b h3/12

Understanding that L has a cubic effect on δ compared with F; however, they both may
be the design parameters that you cannot change. In addition, EI is called “Flexural
Rigidity” that should increase in this case. Again, note that to increase I, h has cubic
effect in increasing I than b. Finally, to reduce δ , E (i.e., the materials stiffness) should
increase, e.g., change Aluminum to Steel.
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VI.III. Materials Selection Issues Related to Failure Analysis

If Weight is a Major Factor in Design, then:

VI.III.1.      For Stress-Critical Structures:

For Stress-Critical Structures the parameter that should be maximized is not only σyield

(i.e., Yield Strength), but “σyield / ρ ” (i.e., Specific Strength), where ρ is
the density of the material, should be maximized.

For example: *(σyield / ρ) unit in the following is: “KN*m/Kg”

(σyield / ρ )|Composites=C/E = ~ 2,000* >> (σyield / ρ )|Steel = ~ 200* > (σyield / ρ )|Al = ~100*

VI.III.2.       For Stiffness-Critical Structures:

For Stiffness-Critical Structures the parameter that should be maximized is not only Ε
(i.e., Young’s Modulus or Stiffness), but “Ε / ρ ” (i.e., Specific Stiffness),
where ρ is the density of the material, should be maximized.

For example: *(Ε / ρ ) unit is in “m2 s-2 * 106”.

(Ε / ρ )|Composites=C/E = ~ 100 >> (Ε / ρ )|Steel = ~ 25 = (Ε / ρ )|Al = ~25
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