Mission Statement and Project Description

- The purpose of the VIP UHDt is to effectively create an autonomous UAS that successfully performs all expected obligations of the 2016 AUVSI Seafarer Student UAS competition.
- Provide students an opportunity to design, fabricate, and fly unmanned drones in a vertically integrated project.

Aircraft

- With maximum flight weight of 5.3 lb the calculated operational flight weight at 4.85 lb and a payload of 1.42 lb will allow for a 8.40% buffer.
- Penguin will complete the search area task in 7.3 minutes at 147,000 ft/h.
- Motor thrust from the two multistar 3S 6000mAh batteries is 3.5 lbf at 100% throttle.
- Drag force calculated at 100% throttle will have a drag coefficient of 0.06 and will have a maximum flight speed of 205920 ft/h.

Image Processing

- Use camera images to identify at least two of five target characteristics and GPS location within 150 ft.
- Fly at about 230 feet (no optical zoom).
- Factoring in overlap and search area, approximately 100 pictures needed at 4-5 seconds per picture.
- Chose Canon S100 digital camera based on weight and Canon Hack Development software.
- Images are extracted from SD card and manually processed at the ground station.

Mission Operations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Threshold</th>
<th>Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff</td>
<td>Achieve controlled landing. Property transition to autonomous flight.</td>
<td></td>
</tr>
<tr>
<td>Flight</td>
<td>Minimum of 3 manual transitions from autonomous flight.</td>
<td></td>
</tr>
<tr>
<td>Landing</td>
<td>Achieve controlled autonomous landing. Property transition from autonomous flight.</td>
<td></td>
</tr>
<tr>
<td>Waypoint navigation (waypoints)</td>
<td>Digital wireless communication with on-board autonomy. cottage, accuracy, and minimizes navigation (position, pitch, and roll) along the planned flight path. Specific experiments based on Section 7.5.</td>
<td></td>
</tr>
<tr>
<td>GCS display items</td>
<td>Accurately display "sea-free zone boundaries," and flight transition display current aircraft position with respect to the "sea-free zone" boundary. Display hill-shaded terrain (MTM) and on-board autonomy status, operational status, and sensor data to the flight operator and pilots.</td>
<td></td>
</tr>
<tr>
<td>Autonomous search</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Secret message</td>
<td>n/a</td>
<td></td>
</tr>
</tbody>
</table>

Electrical Power System

- FrSky 2.4GHz D4R-II Manual control/override Pixhawk flight system.
- Range tested to 1300+ feet.
- 3DR Telemetry 915MHz 100mW Telemetry data transmission, waypoint navigation Pixhawk flight system.
- 1.3 GHz 400mW Video Transmitter Live video feed for manual control FPV system.

Ground Station

Mission Planner is a drone software that allows for:
- Interoperability with AUVSI server.
- Waypoint navigation.
- Allows us to preset GPS coordinates.
- Flight planning capabilities to fly autonomously to waypoints.
- Can record/view/analyze telemetry logs.

Acknowledgements

The UHDt team would like to acknowledge and than Dr. Wayne Shiroma & Dr. Zachary Trimble for mentoring, guiding, and collaborating to get our VIP program started. Special thanks to our mentors Iam Bouret and Ted Ralston for their expertise on drone technologies. Thanks to the UH College of Engineering and Boeing Company for their support of our project. Thanks to the Helmsley Foundation for their support of the VIP Consortium.